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TURBULENCE

Francis H. Harlow
Group T-3, Theoretical Division
The University of California
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

1. BRIEFDESCRIPTION OF THE WORK

Current theories for material mixing include multiphase interpenetration and
single-field turbulence transport with large density variations. Neither approach by
itself is adequate for current problem-solving needs, but in combination they offer
tremendous opportunities for the analysis of complex material dynamics. Multi-
phase theory contributes the “ordered” jets or particulate trajectories that pene-
trate in wave-like fashion; turbulence transport superimposes the important non-
linear diffusive component to the mixing. Shear impedance and energy transport
arise naturally in this combined analysis.

Two approaches for combining these theories are being investigated. One
begins with multiphase flow and adds turbulence enhancement, the other is based
on single-field turbulence transport with closure guidance from multiphase flow
theory. This talk describes the principal world-wide activities in these develop-
ments, with emphasis on current scope of applicability, essential physical and math-
ematical properties and challenges, and the directions for future research. The
discussion demonstrates a continuing need to compromise between theoretical
completeness and tractability for the accurate and efficient numerical solution of
practical problems. It shows, however, that there are not simple procedures for
solving today's challenging probiems involving the turbulent mixing of materials.

The combination of multiphase flow and turbulence transport theories may appear



formidable, but the employment of this powerful combiratior in our numerical

investigations holds high promise of paying handsome dividends.

2.

EXAMPLES

Numerous circumstances occur in nature for which instability, turbulence, and

interpenetration are significant parts of the dynamics. Some examples are the

following.

Normal acceleration of a discontinuity in density can result in the unstable
growth of perturbations, followed by mixing of the two materials. One of the
most exciting and significant recent discoveries in the field of fluid dynamics is
that the well-developed nonlinear phase of this process proceeds in a manner
independent of the initial perturkations. Constant acceleration, for example,
results in self-similar growth of the mix layer; single or multiple shock
acceleration is followed by wave-like multiphase interpenetration plus
diffusion-like turbulence transport of mass, momentum, and energy.

Oblique intersection of a shock with a material interface results in material slip
across th.e contact discontinuity and across the slip surface behind triple-shock
intersection if Mach reflection occurs. Instability can lead to both material
mixing and significant turbulent shear impedance.

Radiation onto a homogenenus or composite material can eject or ablate
material in flow patterns that again combine the multiphase interpenetration
of jets or chunks with the turbulent diffusion of both heat and material.
Deflagration (chemical burn) through grainy materials is a tremendous
challenge to our combined equations for multiphase flow and turbulence
transport; even turbulent flame-front propagation through homogeneous

flammable-gas mixturesis far from being undersood.



These are just a sampling of the numerous examples that can be cited in which
these theoretical techniques are central to the accomplishment of meaningful

analysis.

3. ADVANTAGES AND LIMITATIONS TO THE THEORY

The principal advantage is the ultimate confidence in predictability afforded
by this type of fundamental irivestigation of complicated fluid flows. Other advan-
tages are the wide scope of applicability of the theories, and the insight they furnish
into the processes that are taking place. Possible disadvantages are the necessity for
powerful computers to obtain solutions, and some residual uncertainties that may
always be present in the moment closures for the disordered part of the turbulence.
At present, however, there is little alternative to the use of theoretical techniques
like those described in this presentation, in the attainment of useful resvits for

challenging problems.

4. FUTURE DEVELOPMENTS

Strengthening the theoretica! foundations is a high priority goal for the
investigations. Even at this present stage the various forms of the theory need
extensive exercising. The scope of applications will likely be enormous; many will
produce useful results in the near future while others will require added insight or
computer strength for success. Perhaps the mo=t intriguing directions for future
development lie in combining these models for instability, interpenetration, and
turbulence with the additional physics of radiation transpert, chemical or nuclear
energy release, strange material properties, fragmentation ond coalescence of

particles, and the complexities of an entity-size spectrum.

5. HARDWARE/SOFTWARE REQUIREMENTS
Laboratory and field experiments for testing and verification of theoretical

models will require considerable hardware, but that issue is not addressed in the



present talk. Computers will need considerable memory and speed for most
applications. Software requirements include the most advanced codes for numer-
ical fluid dynamics involving large distortions, interface slippage, mesh adaptivity,
multiphase interpenetration, and all the necessary capability for complicated input

and display of results.
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TECHNICAL FOCUS

Instability

Material interface
Converging shock
Burn front
Ablation front

Perturbation independence!

Turbulence

Mix
Shear impedance

Heat dispersal

Multiphase Interpenetration



PERTURBATION INDEPENDENCE

.
=
;

“Order jets”
plus

turbulent diffusion



INTENSE EXPERIMENTAL ACTIVITY

Shock Tubes
e Soviet (Andronov)
» French (Limeil)
e CalTech
e LANL (Benjamin)

Laser-Driven
e AWRE (foils)
e French (foils and spheres)
e Livermore
e X-1(local and Rochester)

Low-speed
e AWRE (rocket sled)



THREE THEORETICAL APPROACHES

Multifield Interpenetration
¢ Cook-Demuth-Harlow
e Youngs
e Binstock
e Scannapieco-Cranfill
Single-Field Turbulence
¢ Andronov et al.

e Lumley

e Besnard-Harlow-Rauenzahn-Janssen
e Leith

Brute-Force Numerics
¢ Youngs-Wareing

e Sharp-Glimm
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Multiphase Interpenetration

Turbulence
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Mixing of

Mass
Momentum

Energy

EFFECTS

For Example

Material Species
Shear Impedance

Heat Dispersal
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PHYSICAL PROCESSES

Creation of Turbulence

® From Mean-Flow Kinetic Energy

Shear Instability (vorticity) :'_____—_"—
Interpenetration Instabilty —_—>=
¢ From Differential Acceleration —

Pressure Gradients
Shocks o> ‘_o'_-.
Rarefactions ﬂo:.
Multiple Acoustic Waves .2‘::—*—-’
Centrifuging

Buoyancy

® From Chemical or Ablative
Surface Instability

€1



PHYSICAL PROCESSES
Transport

® Mean-Flow Advection
displacement
dilation
rotation (of tensors)
® Diffusion
viscous

turbulent*

*Turbulent self diffusion is non-linear!
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PHYSICAL PROCESSES

Decay

® Cascade (large to small)

O— o=

® Viscous dissipation (small to heat)

i set
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® Drag (the stable part)

=dZ—

e Eddy sharing (for decay of FF )
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Sammary

PHYSICAL PROCESSES

Zasecade rate
from lavqe scales
"egus Is®

heat - Joss vate
"\"0.‘ ,"‘“ scales

Molecular V'.S“".‘ﬂ
Effects
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MATHEMATICAL DESCRIPTIONS (CURRENT)

Multiphase Flow

e Variables for each field
e Exchange Functions
e KEntity Descriptions

Turbulence

e Constant Density

e Variable Density (Low Mach #)
Temperature variations
Different species

e Two-field turbulence
Riij and R2j;

L1



LEVELS OF APPROXIMATION FOR
TURBULENCE

® General Non-Isotropic

® Isotropic Assumption

® Simplified Closures ( R- £) {‘two oqu ation forwm

® Point Functional (mixing length)

® Eddy Viscosity (variable or constant)

A major challenge at all levels:

I T

one c1uaﬁm form
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for example:

CLOSURES

A; with Transport Equation

- J
“%R;,' Séi
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ORDERED-LIMIT GUIDANCE

Multiphase flow has unique correlation between (' and 4 : :

Thus

fa. s

can be "uniquely” calculated.

Unccrtainties lie in the physics of

Y ta 1 iati . ‘0, 02
enfity scale variations . ..‘o‘ .
® entity contortions C N“)
“ oo’

® exchange functions

0¢



THUS

Closure term
= (ordered fraction) (ordered closure)

+
(disordered fraction) (turbulence closure)

Where turbulence closure is

® Derived
e Point functional

e Transported

e Postulated with “universal” constants determined empirically
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